
v2.0 Quest Design Bible
Created

Creator Chandler Bastin

Tags Project Cascade Roleplay

Table of Contents

@February 9, 2024

Overview
Basic Questline Structure Explorations

MINDFLUX Quest Flow Breakdown
STEP 1 Identifying each Quest Bubble
STEP 2 Identify Primary Goals of Each Major Split
STEP 3 Isolate Each Major Split and Minor Split
STEP 4 Key each Major Split Choice with a symbol (And Variable)
STEP 5 Calculate each ending based on Split Choices Made

D.N.A. of an Encounter
Questline Planning Terms

Variables, Instructions, Conditions
What Is A Variable?
What Categories of Variables are there?
How Do I Make a Global Variable?
How Are Variables Used in My Flows?

Instructions
Conditions

How Do I Write an Instruction?
How Do I Write a Condition?
What is “Commenting Out Script” and How Do I Do It?

Policy on Unfinished Variables and Commenting
When Should I Use an Instruction?
When Should I Use a Condition?
Variable Use Cases

MINDFLUX Narrative Gameplay Loop
Design Structures of MINDFLUX

Checks
Skill Check

v2.0 Quest Design Bible 1

Overview
This document covers the basic questline development procedure, specifically-

1. Fundamentals of a MINDFLUX Questline

2. How to prepare a quest.

3. Variable Explanation

4. Brief Design Explanation

5. Variable Implementation in Articy

Basic Questline Structure Explorations
In MINDFLUX, questlines can be represented by a timeline of events. In its most
basic form, quests resemble a straight line with a beginning and end:

Observation Check
Gates

Global Gate
Info Gate
Kickout Gate
Lockout Gate
Tally Gate
Reusable Gates: Items
Reusable Gates: Other

Tags
#growth
#test
#item

Talking Head Emotions
Important Rules

FAQ
Info
Feedback Images

v2.0 Quest Design Bible 2

Above is what we would call a linear quest. The player has a defined start, travels
along a set path, and witnesses a defined end. These types of quests are usually
seen in MMO’s or adventure games, such as the Last of Us.

Occasionally, developers will add variance to their titles in the form of multiple
endings. This most often occurs in a decision at the tail end of the game:

In this example, events play out the same until a final decision, which determines
the ending. Games like Ghosts of Tsushima and Infamous use this questline type.

Linear Questline

Final Split Questline

v2.0 Quest Design Bible 3

It’s still linear, but with the addition of a final split, thus it’s name, the Final Split
Questline.

Some games add decisions throughout the questline that can affect the ending, or
place the final choice earlier in the story:

In the above example, there are splits that equate out to three possible endings. In
some cases, right before and ending, the developer will place a final choice that
can return you to the “main” or “intended” timeline of events, indicated by
narrative splits 2 and 4. Books like the “Choose your own Adventures” series
implement this style of game design.

Many games have developed variances on the “choose your own adventure”
style, either by simplifying it or adding complexity.

The “Choose Your Own Adventure” Questline

v2.0 Quest Design Bible 4

Visual novels often employ what's called a “return point”, where players can
receive a less-than satisfactory ending, and be deposited back at the moment the
decision was made. They also have splits that allow the player to return back to
different narrative paths.

Obviously, return points aren’t necessarily the best for narratives found in CRPGs,
though some have managed to use them to great effect (Disco Elysium). So how
does a game within our genre deal with questlines?

Visual Novel Questline

v2.0 Quest Design Bible 5

In KOTOR, instead of using splits, the writers provided numerous moments within
the questline where the player can make a KARMA decision, swaying their
character toward the dark or light side. These decisions more often than not make
little to no impact on the ending of the quest. Eventually, the player is given a final
decision which can usually be made regardless of the players Karma. This is a
free-flow system, and there is rarely blockers to the player making whatever
decision they want. Their decision to do this allowed the writers the freedom to
create more quests without the need for massive balancing changes based on
feedback at the cost of roleplay variety and nuance.

But what if this system was taken to a more extreme level? Let’s take a look at
Wrath of the Righteous, a game that takes the fundamentals shown in BioWare
games and takes them to a whole new level.

Karma Decision Questline

v2.0 Quest Design Bible 6

Instead of creating a massive, complex flow, WOTR creates a hybrid quest
timeline that incorporates the simplicity and manageability of linear quests with
roleplaying diversity. For the bulk of the story, the player goes down the same
questline, in this case it’s “Stop the Demon Invasion of Golarion”. At key moments
in the story, the player will be granted a choice on how they go about stopping the
invasion. Depending on their decision, they are blocked from other paths. In the
above example, the player, indicated in grey, chose the yellow path at their first
split. This blocks off the red and green paths entirely, but the blue path can still be
chosen. At the second split, the player chooses the blue path, granting them the
choice of either the yellow or blue paths endings.

So that’s all fine and good, but what does that have to do with our game? Let’s
take a look at how a quest timeline would look in MINDFLUX.

MINDFLUX Quest Flow Breakdown

“It’s not what you achieved, it’s how you achieved it that
scares me.” -Unknown

The “Mythic Path” Questline

v2.0 Quest Design Bible 7

MINDFLUX questlines take inspiration from KOTOR as well as Wrath of the
Righteous to create our own unique flow.

In our game, we don’t have karma or “mythic paths”. Our narrative has a particular
focus on the intricacies of an NPC’s character, and more importantly, how a player
interacts with that NPC using the Cascade roleplaying system. Therefore, our
narrative splits have to reflect tangible choices made in relation to that character,
much like a visual novel.

i.e. “Discovering Hobbes’ Secret” rather than “Dark Side Evil Choice”

On top of this, our game can’t rely on waypoints, mini map's, fast travel, or other
non-contextual systems to orient the player. We also have a heavy focus on self-
discovery in the form of investigation, encouraging a more “non-linear” method of
quest design.

If planned poorly, quests can become muddled, losing all context for the player.

I’ve taken the liberty of charting and naming each of the major elements that
comprise our questline flow from a design perspective. These terms are as
follows:

Glossary

1. Encounter Split- A hub of sorts where the player can choose to pursue
different leads.

2. Major Split- A narrative beat where the player can make an ending-defining
decision.

3. Minor Split- A narrative beat where the player can make a non-ending defining
decision.

4. Split Goal- The primary goal of a split that must be accomplished regardless of
choices made.

5. Variable- A symbol that provides short hand for decisions made by the player.

6. Minor Variance- A minor variance in the quest that doesn’t equate to ending
changes.

v2.0 Quest Design Bible 8

To create a questline flow for MINDFLUX, we will need to complete the following
steps:

1. Identify each Major Split and total required quest bubble.

2. Identify primary goals of each quest bubble.

3. Identify each variable path.

4. Assign each path a variable.

5. Create endings in line with paths.

Let’s walk through the above steps in an example questline:

STEP 1 Identifying each Quest Bubble
Let’s say that we’re designing a quest where the player is trying to determine if
Hobbes’ had something to do with a murder that took place in the quarry. We go
through the process of workshopping the idea, modifying the narrative inflection
points, doing character studies, the whole smash. We are ready to start charting
out the player flow.

First thing we need to do is identify every location where the player can make a
decision on what to do first.

In this questline, we decided in the prewriting phase to have two parts, one where
the player can grill Hobbes’, and another where the player can find clues from the
two witnesses of the crime, Bys and the Arms Dealer.

We noticed then, that the player could, after a short introduction to the quest,
decide which to accomplish first. From this consideration, we’ve determined there
are two Major Splits that appear in the narrative:

1. The Player Grills Hobbes and either:

a. Discovers their secret.

b. Loses their temper at Hobbes.

c. Finds nothing of consequence.

2. The Player Grills Bys and the Arms Dealer and either:

v2.0 Quest Design Bible 9

a. Sides with the Arms Dealer

b. Sides with Bys

c. Comes to the wrong conclusion.

When charted in a timeline, it would look something like this:

In this example, we can see that the player has the choice to either pursue Major
Split A (Grilling Hobbes) or Major Split B (Grilling Witnesses). From there, they can
make major decisions which will effect the ending of the game.

STEP 2 Identify Primary Goals of Each Major Split
Next, we need to determine what progress the player must absolutely have made
by the end of each split in order for the questline to proceed.

Major Split A, we know through our prewriting that the major goal is to obtain
enough evidence (or perceived evidence) in order to make a decision on whether
or not Hobbes is guilty. Therefore, the primary goal would be to Obtain Evidence
of Hobbes’ Guilt.

An important note: You will have noticed the “Sides with Hobbes” path in the
Major Split A diagram above. Each time there is a line going through curved

v2.0 Quest Design Bible 10

options, that indicates a always accessible option, meaning that, no matter the
player’s build, they can still proceed through the quest (though not always to the
best of results). Often, making these selections will lead to what we call a “Dump
Ending”, which will be talked about later in this document.

STEP 3 Isolate Each Major Split and Minor Split
Shown above, next we create a flow showing each major and minor split, minus
the endings.

STEP 4 Key each Major Split Choice with a symbol (And Variable)
Next, we need to simply assign each major split choice with a symbol so we have
a short hand when discussing our flows. This will allow them to be cleaner. We will
need to create a variable in Articy as well for each split choice we need to track in
order to output the appropriate endings/dialogue variations.

KEY:

1. Red Diamond = Discover Hobbes’ Secret

2. Yellow Circle = Scream at Hobbes’

3. Purple Star = Side with Bys

4. Green Heart = Side with the Arms Dealer

STEP 5 Calculate each ending based on Split Choices Made
Finally, we pull everything together in order to isolate and implement each
possible ending. Below is a potential outline of how endings can be triggered. In
this example, the encounter with Hobbes is the primary encounter that shifts the
player to one of three endings.

If the player discovered Hobbes secret, they are diverted to the diamond ending
split.

v2.0 Quest Design Bible 11

If the player got angry at Hobbes, they are diverted to the circle ending split.

If they sided with Hobbes, they are diverted to the dump split, as that option did
not require use of the personality traits or roleplaying system at large.

You will notice that there is another split branching off the diamond and circle
endings. This is where the second encounter comes into play.

If the player discovered Hobbes’ secret and sided with Bys, the uncover the full
truth, as bitter as it is, granting rewards in line with that path.

If the player got angry with Hobbes’ and sided with the Arms dealer, they frame
Hobbes’, granting rewards in line with that path.

If the player sided with Hobbes, they would be granted a minor variance based on
what they did with the witnesses, but in the end, Hobbes’ blames you for the
murder, forcing you to run from the scene.

Player Flow example:

MINDFLUX Questline

v2.0 Quest Design Bible 12

1. Player chose Hobbes’ Major Split first.

2. Discovered Hobbes’ Secret.

3. At the second Quest Bubble, player forced to do next encounter with
witnesses as they’ve already done Hobbes.

4. Discovered nothing of use.

5. Player obtains the pure diamond ending.

D.N.A. of an Encounter
Now that we understand the way we can chart out an entire questline within the
confines of a flow, what about an encounter?

v2.0 Quest Design Bible 13

Encounters are broken down into two major sections:

1. Discovery Segment

a. The player is uncovering information, exploring options, or otherwise
discovering insights concerning the encounter.

b. No major encounter-ending decisions can happen during this segment.

2. Decision Segment

a. Occurs after the discovery segment.

b. Where the player makes a final decision.

c. Is usually locked, meaning once the player has entered into the decision
segment, they will be forced to make a choice. This adds pressure.

v2.0 Quest Design Bible 14

d. Decisions can be gated by both local and questline variables.

e. Choices often end with a questline variable change, but sometimes won’t
depending on the decision being made and the logic of the quest.

In the above image, every thing LEFT of the Major Split icon is the Discovery
Segment.

The area RIGHT of the Major Split icon is the Decision Segment.

Questline Planning Terms
Glossary:

1. Root

a. The homebase of the discovery segment.

b. Can be either a literal narrative hub in dialogue, or a baseline state where
the player isn’t actively investigating an object.

c. For the vast majority of flows, it is an invisible concept, not a physical
dialogue structure.

2. Hard Root Return

a. Returns the player back to the root and blocks the thread it is attached to.

b. This prevents the player from continually doing the same investigation
over and over.

3. Soft Root Return

a. Returns the player back to the root without blocking the attached
discovery path.

4. Variables (Global, Local, Etc)

a. Explained Below.

Variables, Instructions, Conditions
The following section will discuss VARIABLES, and why/how they are used in
Articy to accomplish all narrative logic.

v2.0 Quest Design Bible 15

What Is A Variable?
A variable, by definition, is a marker for something that can change in the game. It
is the primary method in which we keep track of what the player has or has not
done.

For example, let’s say the player has the choice to either kill or save an NPC. They
choose the kill option. In order for us to keep track of that decision, and more
importantly use that decision in a later encounter, we would need a variable.

Variables also allow us to communicate information to custom-built systems in our
project. For instance, can use a variable to compare a players skill potency against
a skill gate to determine whether or not their check is successful.

What Categories of Variables are there?
From the perspective of the Narrative Designer, there are FOUR major types of
variables:

1. Global Narrative Variables

a. These variables are created in Articy and are used to track important
decisions that can be used later in the narrative. If you need to keep track
of a choice if the player leaves that conversation, you would use a Global
Narrative Variable.

b. Global Narrative Variables are also tracked by the Save/Load system
(obviously), therefore they must be implemented on the Unity side as well
by a designer.

v2.0 Quest Design Bible 16

2. Local Narrative Variables

a. These variables are created in Articy and are used only if the data DOES
NOT need to be retained once the player leaves the conversation.

v2.0 Quest Design Bible 17

b. These variables are not transferred over to unity, which means they will
not be saved by our save/load system. Once the conversation is closed,
they will not be retained.

c. As of right now, we are not using a local variable system, but there is
potential use for this in the future.

3. Skill Potency Variables

a. These variables are used to check the player’s brain map skills potency,
most often used to create gates.

b. These will NOT be created by you, rather they’re maintained by a game
designer. More information on these variables below.

4. Item/Reusable Variables

a. These variables are used to check if an item is in the player’s inventory.

b. These will NOT be created by you, rather they’re maintained by a game
designer. More information on these variables below.

v2.0 Quest Design Bible 18

How Do I Make a Global Variable?
In order to create a variable, you must complete the following steps.

1. First, create or identify which LIST the variable must exist under. Variables are
in fact stored in named lists, found under the Global Variable header in Articy:

v2.0 Quest Design Bible 19

The above image contains our current lists. For the Roleplay Demo, the majority of
our “narrative specific” (non-external system related) variables exist inside of the
RoleplayDemoVariables list, which looks like this:

v2.0 Quest Design Bible 20

v2.0 Quest Design Bible 21

2. Once you have identified the correct list, simply check it out using the “claim
partition” button.

3. In order to create a new variable, press the X button (highlighted below).

4. Next, name your variable using our standardized naming convention:

a. CharacterName_VariableType_VariableUse

i. CharacterName = Full or Abbreviated Character name that relates to
the variable.

ii. VariableType = What function does the variable serve? More info on
Variable Types below.

iii. VariableUse = Short descriptor of what the variable is tracking.

b. For an example, lets say that you need a variable to track if the player has
uncovered info regarding Bys’ past as a mercenary. You would create a
variable named:

i. Bys_Info_SecretPastMerc

5. Now create a brief description of what function this variable provides.

v2.0 Quest Design Bible 22

6. Lastly, change the “Type” field to Integer. It will default the variable’s value to
0.

a. As a shorthand, 0 essentially means FALSE, or that the player HAS NOT
done this action.

You have successfully created a variable.

How Are Variables Used in My Flows?
In Articy, variables are used inside the confines of CONDITIONS or
INSTRUCTIONS. These two fragments are used to either CHECK or CHANGE the
value of a variable. Referencing a variable in either a condition or instruction looks
the same, though there are differences indicated below.

To reference a variable, you simply need to do the following:

1. Type the Variable List the needed variable exists in. In this case, let’s say our
variable lives in RoleplayDemoVariables, so we type that:

2. Add a period.

v2.0 Quest Design Bible 23

3. Type the variable you need to reference.

4. Add the subsequent instruction/conditions (explained in depth later!)

v2.0 Quest Design Bible 24

In practice, they look like this:

Instructions

And this is what and Instruction looks like while being used:

v2.0 Quest Design Bible 25

Conditions

And this is what a condition looks like while being used:

v2.0 Quest Design Bible 26

How Do I Write an Instruction?
Instructions can only do one thing: Change the VALUE OF A VARIABLE. They can
make a variable equal whatever number you want, or increase/decrease a variable
by a certain value.

1. Setting A Variable’s Value Equal to the number listed:

a. =

b. EX: RoleplayDemoVariables.Variable_Name_Here = 1

i. Sets the listed variable’s value to 1.

ii. If the variable’s value was 10, using this instruction would set it to 1.

v2.0 Quest Design Bible 27

2. Increase the variable’s value by an amount.

a. +=

b. EX: RoleplayDemoVariables.Variable_Name_Here += 1

i. Adds +1 to the value of a variable.

ii. If the variable’s value was 10, using this instruction would increase it to
11.

3. Decrease the variable’s value by an amount.

a. -=

b. EX: RoleplayDemoVariables.Variable_Name_Here -= 1

v2.0 Quest Design Bible 28

i. Subtracts -1 to the value of a variable.

ii. If the Variable’s Value was 10, using this instruction would reduce it to
9.

How Do I Write a Condition?
Conditions can only compare a variable’s value to a referenced amount.

Simply put, conditions ask the question “Is the indicated variable’s value equal
to/less than/greater than/less than or equal to/greater than or equal to this
number?”

1. If you want to see if a variable is equal to a specified value:

a. ==

b. EX: RoleplayDemoVariables.Variable_Name_Here == 1

i. Checks to see if the variable listed is exactly equal to 1.

ii. If it is equal to 1, green path. If not, red path.

v2.0 Quest Design Bible 29

2. If you want to see if a variable is less than a specified value:

a. <

b. EX: RoleplayDemoVariables.Variable_Name_Here < 1

i. Checks to see if the variable listed is less than one.

ii. If it equals 0 or below, green path. If it equals 1 or above, red path.

3. If you want to see if a variable is greater than a specified value:

a. >

v2.0 Quest Design Bible 30

b. EX: RoleplayDemoVariables.Variable_Name_Here > 1

i. Checks to see if the variable listed is greater than one.

ii. If it equals 2 or above, green path. If it equals 1 or below, red path.

4. If you want to see if a variable is less than or equal to a value:

a. <=

b. EX: RoleplayDemoVariables.Variable_Name_Here <= 1

i. Checks to see if the value equals or is less than 1.

ii. If one or below, green. If 2 or above, red.

v2.0 Quest Design Bible 31

5. If you want to see if a variable is greater than or equal to a value:

a. >=

b. EX: RoleplayDemoVariables.Variable_Name_Here >= 1

i. Checks to see if the value equals or is greater than 1.

ii. If one or above, green. If 0 or below, red.

6. If you want to chain MULTIPLE conditions:

a. &&

v2.0 Quest Design Bible 32

b. EX: RoleplayDemoVariables.Variable_Name_Here1 == 3 &&
RoleplayDemoVariables.Variable_Name_Here2 == 1

i. Checks to see if variable one equals 3 and variable two equals 1.

ii. If one = 3 and two = 1, green. If one is anything else or two is anything
else, red.

1. It is good practice to put conditionals into the INPUT PINS of options
you want gated:

v2.0 Quest Design Bible 33

What is “Commenting Out Script” and How Do I Do It?
Commenting out is when you use // to turn live script into text that is not read by
Articy or Unity. This is used to add clarifying notes or to cancel out logic without
needing to delete it.

It is done by adding two slashes // before the scripted line, and looks like this:

v2.0 Quest Design Bible 34

Policy on Unfinished Variables and Commenting
ALWAYS comment out script that is not ready to be implemented or has RED
LINES UNDERNEATH. If you do not, the Articy project cannot be imported into
Unity! Always comment them out until they are 100% ready to go!

v2.0 Quest Design Bible 35

When Should I Use an Instruction?
You use an Instruction fragment when you want to CHANGE the value of a
variable, usually from a 0 to a 1. We only do this to out custom GLOBAL
NARRATIVE VARIABLES, never to our ITEM VARIABLES or SKILL POTENCY
VARIABLES as those are managed by Unity.

For example, let’s say that we want to track if the player has uncovered Bys’ secret
past as a mercenary. We’d create a variable called Bys_Info_SecretPastMerc,
make it an integer set to 0, then create an instruction that changes that variable to
1 (true) at the moment in the narrative where the player uncovers that information.

v2.0 Quest Design Bible 36

In the above example, the player asked about Bys’ secret past and received an
answer. We can now use this variable in the future to create gates, like below.

When Should I Use a Condition?
You use a Condition fragment when you want the player’s narrative path to split
due to past choices or character build statistics. We do this by CHECKING a
variable’s value, then sending the player down the appropriate path depending on
said value.

For example, let’s say that we want to create a new story thread that only opens
up if the player has uncovered Bys’ secret past, a variable we created in our
Global Variable List called Bys_Info_SecretPastMerc.

In the above example, we have a condition that checks the variable to see if it is
set to 1. If it is, you go down the green path. If it isn’t, you go down the red.

Conditions can also be used in PINS. Often, this is a necessity as it limits the
amount of fragments you have in your flows.

v2.0 Quest Design Bible 37

Variable Use Cases
There are technically two major ways that variables are utilized in our game-
Checks and Gates. Each of these rely on the various variable sub groups created
to help quickly differentiate what task a variable is accomplishing.

It is important to note that the original groupings (Global Narrative, Local
Narrative, Skill Potency, Item/Reusable) are sometimes broken down into sub-
categories, especially the Global Narrative group. Technically, the sub-categories
all function the exact same way, we just give them different names AND
colorations in Articy to help us quickly identify their specific use case while
looking at them in a list or in the flow. Try your best not to get confused.

Lets do a quick overview of each type of use case:

1. Check

a. Checks are used when you need to compare a variables stat against an
expected value.

b. Most often used via the Skill Potency Variable set to compare Brain map
statistics against expected values and the Global Narrative Variables.

v2.0 Quest Design Bible 38

2. Gate

a. Gates are used when you need to block what threads the player has
access to.

b. Most commonly, gates use the Global Narrative Variable types.

c. The following are all normal Global Narrative Variables, but their names
indicate their use case. They all technically function the exact same.

i. Global

1. Used when the variable is used in multiple flows.

ii. Info

1. Used to identify information that the player has uncovered about
someone.

Example of a skill potency check structure.

v2.0 Quest Design Bible 39

iii. Lockout (Currently called “Gate”)

1. Used to mark when a thread has been completed and never needs
to be accessed again.

2. Prevents the player from endlessly looping conversation threads
that shouldn’t be repeated.

iv. Tally

1. A stacking variable that increments higher than 1. Used when a
player needs to complete numerous actions to continue down a
questline. Prevents chaining multiple gates and making multiple
variables.

v. Kickout

1. Used when a player is kicked out of a conversation due to narrative
reasons, such as the NPC getting mad. When the player re-enters
the conversation.

v2.0 Quest Design Bible 40

MINDFLUX Narrative Gameplay Loop
1. The Cascade roleplaying system has been described as “Tactical Roleplay”,

and for good reason. The name of the game is STRATEGY. NPCs are living,
breathing people with wants, hopes, and desires. These may run parallel or
contrast to your own. In order to get what you want, you’re going to have to
learn about them and push their buttons.

2. The player fantasy of MINDFLUX is that of the Mechanized Man- a person
who can modify their personality at will to get what they want.

3. The computer brain of a Cerebroid groups major conversational paradigms
into four categories:

a. Mentalist

i. Using subtle manipulation and psychological tricks.

b. Bureaucratic

i. Using the law and ones own authority.

c. Primalist

i. Using primal, animalistic strategies.

d. Bargaining

i. Using trade or bartering, tit for tat.

4. The effectiveness of these conversational paradigms (called Personality Traits
or Skills), is directly related to how much of a resource is dedicated to it. This
resource is called X85, the artificial neuron structure of the Axons.

5. The more X85 you dedicate to a skill, the better it runs. Better, of course, is
subjective. If a person is highly adept at avoiding certain conversational
paradigms, they might react poorly to using one with a such a high degree of
power.

6. The problem is, X85 is a limited resource. Therefore, a Cerebroid must be
strategic as to what conversational paradigm they wish to rely on during a
given encounter. There are often many answers to the same problem, which is
where roleplaying comes into account.

v2.0 Quest Design Bible 41

7. Knowing what to power comes from INVESTIGATION. Learning about NPCS,
making observations, discovering items and analyzing them. The more you
know about a person, the more likely you are to get what you want.

8. This means that, as a Narrative Designer, you must know the character you’re
writing for to a high level.

9. Remember- this is an NPC-focused title. These are living, breathing people
who want what they want, not just some mindless quest giver.

10. As an example, let’s say you’re writing an NPC who is a double agent. How
would they react to a player using a high-level Primalist skill? If they’ve been
trained well, Primalist would most likely not work in the way the player might
expect. What about Mentalist? Would they react poorly because they’ve been
trained against such tactics, or would they get excited because the player
knows how to play “the spy game”? What potency levels to use for checks is
directly based on the characters personality. There are no hard and fast rules
here, only the rule of character.

11. Below is a sample of the MINDFLUX narrative gameplay loop. This will not be
sufficient to train you to write effectively for us, but it will provide an excellent
foundation.

v2.0 Quest Design Bible 42

11. The below sections describe the structures we use to write narratives in
Articy. These are more technical rundowns. In order to become an effective
writer, you must master the technical side as well as the creative design side.

Design Structures of MINDFLUX
In MINDFLUX, we have a smattering of design structures that control how are
narrative is built.

1. Checks

a. Skill Check

b. Observation Check

2. Gates

a. Global Gate

b. Info Gate

c. Kickout Gate

d. Lockout Gate

e. Tally Gate

f. Item/Reusable Gate

3. Tags

a. Growth

b. Test

c. Item

Checks

Skill Check
Dialogue Option Colored:

Mentalist: BLUE

v2.0 Quest Design Bible 43

Bargainer: PURPLE

Bureaucrat: GREEN

Primalist: RED

Hardware: BLACK

1. A Skill Check where a player’s potency value is compared against an expected
number. If the potency value of the player’s trait is greater than or equal to ≥
the check value, it is passed. If it is lower, it fails.

2. This is the bread and butter of our roleplay system. There is a lot that goes into
deciding when to use a skill check and what potency level should be applied.
You will need verbal guidance as to our design disciplines in order to be an
effective writer. There is no way a document and be comprehensive enough to
get you prepared for all necessary gameplay considerations.

3. As an added warning, there are also various ways you can soft lock the player
by not adding the necessary exits to the conversation. It is close to impossible
to “read” how to prevent this. You will need consistent reviews and
conversation to build that instinct.

4. To create a skill check, first start with an Ambrose dialogue fragment:

v2.0 Quest Design Bible 44

4. Decide which of the five possible checks you wish to use.

5. Color the fragment based on your skill selection.

6. Use the #test command to ID the appropriate skill (more on #test below).

7. Write your intended check like. This option should be narratively written
generic enough to indicate the action of what is about to occur, while also
communicating the weight of the action.

8. In our game, the four main personality skills can technically be turned off. If
the player has done this, those related dialogue lines should NOT appear in
their selection box. In the input pin, add your “Is this mod powered?” check in
the form of:

v2.0 Quest Design Bible 45

a. SkillPotency.[SkillName] == 1 This should read SkillPotency.[SkillName]≥1

b. This simply asks if the skill is on at all. If it is, the line will appear.

9. From there, we will create a conditional which will provide the main skill check
for players. If we want the check to ask “Is the player’s mentalist greater than
or equal to 3?”, we would put SkillPotency.Mentalist >= 3

v2.0 Quest Design Bible 46

10. The line splits into two responses by the NPC, one being the fail line, the other
the success line.

11. This sequencing will allow interesting threads to be explored depending on the
effectiveness of the Player’s personality trait without being forced to create
weaker initial options.

12. SkillPotency variables are connected to our brain map system in Unity. Please
do not create any of your own! They will not work. Plus, it’s a heavy design
decision to create new skills. Imagine just randomly deciding to add another
skill to Dungeons and Dragons on a whim, like Dancing. What does dancing
get its modifier from? What classes get dancing bonuses? What items assist
with dancing? In short, don’t randomly add new skills. Talk to a systems
designer if you have an idea for one.

Observation Check
1. Skill Potency is also used to create OBSERVATIONS:

v2.0 Quest Design Bible 47

2. Shown above is a simple Observation. By using SkillPotency variables, we can
limit what the player can or cannot observe.

3. Observations are grouped into three categories:

a. Mental Observations

i. Used for observations relating to psychological or subconscious
phenomenon.

1. Sweating, eyes darting, quiver in voice, unintentional movements,
etc.

b. Physical Observations

i. Used for observations relating to ones physical appearance.

1. Dirt under nails, bags under eyes, unkempt hair, blemishes, tattoos,
clothing.

c. Verbal Observations

i. Used for observations relating to what one says.

1. Inconsistencies in ones story, lies, knowledge levels on specific
subjects.

4. To make an observation, first double click an empty fragment’s speaker image.

v2.0 Quest Design Bible 48

5. It will open up a list of known speaker entities:

v2.0 Quest Design Bible 49

6. Search either Mental, Physical, or Verbal. Select the one you would like:

v2.0 Quest Design Bible 50

7. Color the fragment orange:

v2.0 Quest Design Bible 51

8. Add a condition fragment and add the skill potency check. Connect it to the
previous line, the observation, and the following line:

9. Use the #test tag followed by the skill required to activate this observation in
the main text body:

v2.0 Quest Design Bible 52

10. With this structure, a player with Mentalist 2 will see the observation. A player
without mentalist 2 will not see the observation.

11. This could lead to the player making different decisions based on their
observations. For instance:

12. In the above case, the player who received the observation might have greater
cause to call her a liar. This is an extremely obvious example, but should help
you understand how observations play a role in our game.

13. NEVER put the skill check in the input pin of the observation. THIS WILL NOT
WORK. You must use a conditional fragment.

Gates

Global Gate
Global Instruction Color: DARK BLUE

Naming Structure: [Variable Set].Global_[Variable Type]_[Variable Name]

v2.0 Quest Design Bible 53

Example: RoleplayDemoVariables.Global_Info_ADClanAnima

1. Global Instructions/Conditions are technically the same as Info
Instructions/Conditions, only they represent variables that will be used outside
of this conversation, usually in the future or with another NPC.

2. For example, if you uncover information by talking to an NPC that the player
relay back to a quest giver, it would be a Global Gate.

3. Global Gates have the term “Global” where the NPC name would be.

4. These are the first variables that should be identified during pre-writing for the
quest, as they are the foundations of the storyline and subsequent endings.

Info Gate
Info Instruction Color: LIGHT BLUE

Naming Structure: [Variable Set].[Name of NPC]_Info_[Variable Name]

Example: RoleplayDemoVariables.AD_Info_SecretPast

1. An Info Gate check is used when you would like to write a thread that
shouldn’t be accessed unless the player has uncovered certain information.

v2.0 Quest Design Bible 54

2. For example, lets say you don’t want the player to be able to ask a certain
question about a person’s past unless they’ve uncovered cause to question
said past. In the flow, you would block out the place where the player
uncovers the information using an instruction:

3. Then, we use the pin leading into the selection we want gated by the above
discovery by placing it in the pin:

3. Potency Checks and Gate Checks can be combined as well:

v2.0 Quest Design Bible 55

Kickout Gate
Kickout Instruction Color: RED

Naming Structure: [Variable Set].[Name of NPC]_Kickout_[Variable Name]

Example: RoleplayDemoVariables.AD_Kickout_CRIQuestions

1. Occasionally, you’ll want to kick the player out of a conversation for various
narrative reasons. In more complex flows, this could lead to a narrative
breakdown as without kickout gates, the player would have to repeat the same
lines of dialogue every time they leave the conversation and re-enter it.

2. For example, let’s say half-way through the conversation, you want the player
to have the option to bail out and adjust their brain maps. Without kickout
gates, the player would enter the conversation from the very beginning. That’s
no good! Therefore, we would create a variable that can allow us to start the
player off at a different point in the conversation, creating narrative cohesion.

3. In the below image, you can see a place in which the player can leave the
conversation. We write a kickout variable, set it to one, then push the player
out of the conversation using a jump hub that ends the whole flow (This is
accomplished by putting a hub that is connected to the output pin of the whole
dialogue).

v2.0 Quest Design Bible 56

4. From there, we can create a chain of Kickout Gates at the beginning of the
dialogue, seamlessly directing the player to the appropriate conversation point
depending on where they jumped out.

Where the Jump To fragment in the first image leads.

v2.0 Quest Design Bible 57

5. The ORDER of these Kickout Gates MATTERS IMMENSLEY. Since they are
essentially chained together (shown two images above), if the player has one
of those values set == 1, Articy will send them down that path. If you mis order
the chain, the player could potentially get sent back to an earlier part of the
conversation, completely sequence breaking everything.

An overview of what a chained kickout gate sequence may look like. Each thread has a jump that
puts the player in the most appropriate point in the story depending on where they exited.

A close-up look as to what one of these may look like

v2.0 Quest Design Bible 58

Lockout Gate
Lockout Instruction Color: GREY

Naming Structure: [Variable Set].[Name of NPC]_Lockout_[Thread
Name]_Thread

Example: RoleplayDemoVariables.AD_Lockout_SaarpEnemies_Thread

1. Lockout Gates are used if you do not want a player to repeat a thread multiple
times. This could be for narrative reasons, or if the player received a growth
reward, etc.

2. These gates are often used in sections where the player can return to a root
hub which gives the risk of the player repeating lines of questioning that at
times should not be returned to.

3. In order to make a lockout gate, simply place an instruction at the end of the
thread, often right before the jump fragment.

4. From there, simply add a conditional statement in the pin that prevents the
player from returning to that thread.

v2.0 Quest Design Bible 59

5. Here is the full view of this thread:

Tally Gate
Additive Instruction Color: YELLOW

Subtractive Instruction Color: MUAVE

Naming Structure: [Variable Set].[Name of NPC]_Tally_[Variable Name]

Example: RoleplayDemoVariables.AD_Tally_FirstEncDisposition

v2.0 Quest Design Bible 60

1. Tally gates are used if you wish to keep a running score of players decisions
without using a large quantity of variables.

2. For example, let’s say you are trying to convince a person you are trustworthy.
Each action that can cause a shift in that trust can increase or decrease the
variable total. That stat can then be used to flow the player down the
appropriate narrative ending.

3. The obvious use case for this type of variable is if there are multiple things a
player needs to do in order to access a new thread. For instance, lets say the
player needs to say three nice things to the Arms Dealer in order for him to
trust them. In the flow, you would see three places in which you could increase
the Arms Dealers Disposition:

Increase tally variable example.

Decrease tally variable example.

v2.0 Quest Design Bible 61

4. There would then be a gate to a line that can only be accessed if the
RoleplayDemoVariables.AD_Tally_KnowsSomething variable’s value was three:

5. The same can be done for the decreasing tally variable.

v2.0 Quest Design Bible 62

Reusable Gates: Items
1. Item gates, and reusable variable gates in-general, should be used when we

want to check the status of things that exist outside of dialogue.

2. Each of the item variables in “ReusableVariables” is controlled on a per-
conversation basis by scripts on the Unity-side of the project. This allows us
to use the same variables in multiple conversations to represent and check
vastly different things without creating new unique variables for those checks.
Customizing these variables for one conversation won’t affect any other
conversation.

3. Item variables, like “ReusableVariables.i1”, can be used to check if there are
items in the player’s inventory. There are 10 different item variables
(ReusableVariables.i1, ReusableVariables.i2, etc), and each can be customized
on a per-encounter basis on the Unity side.

4. When using an item variable, you’ll need to provide some notes to the
development team as an annotation at the start of the dialogue flow with a list
of which item variables you are using, what item they are checking for, and
what values they should be set to if those items are found.

5. Item variables are extremely flexible in how they can be used and counted on
the Unity-side. If you are planning an encounter that might be checking
multiple combinations of items, it might be best to contact the development
team to assist in setting up the item gates. Here are some of the ways we can
use reusable item variables.

v2.0 Quest Design Bible 63

a. Single Checks: We can check if the player has a specific item, and set one
of those variables to a specific integer if the player has it (set i1 to 1 if the
player has babe’s eye). This is most helpful if we are just checking if the
player has a specific item.

b. Find Best: We can check for a list of items, each with different “values”,
and set the variable to the highest found item value. (check for babe’s eye
at 1, armor plate at 2, and special key at 3). This can be helpful if we want
to trigger unique dialogue based on items that the player found, but
weighted so that the “most important” item is mentioned out of the ones
that the player presented.

c. Single Addative: We can check for a specific item, count how many the
player has, and add them up to a single integer (set i1 to +1 for each scrap
metal). This is handy if we want to check if the player has enough of a
specific item.

d. Group Addative: we can check for multiple items, with the same value or
different values, and add those values up based on how many of each the
player has. This could be useful if we want an NPC to mention that we are
traveling light, carrying around a bunch of junk, or carrying a items that are
relevant to a particular character’s interests.

6. We can also place restrictions on how item variables are counted, depending
on why we are checking. If we are checking the player’s inventory for items
because we plan to take an item from their inventory (like turning in a quest
item), we should use a separate item variable to make sure that the player has
one that is unequipped. That way the NPC can correctly identify that the
player has what they are looking for, but also tell the player that they need to
un-equip the item first if they don’t have a spare copy. If you want a variable to
only include unequipped items, be sure to mention that in the annotation.

7. When implementing an item gate, they behave like any other condition. The
simplest item gates would be set up to check for >0 or ==1, but more complex
gates can be made depending on what you are checking for. Using light
purple for the annotations and the gates will make it much easier for the
implementation team to find and test these values. You may want to add a
comment in the condition itself to re-iterate what item it’s checking for.

v2.0 Quest Design Bible 64

Reusable Gates: Other
1. There are other reusable variables that can be used to check the status of

things that occurred, both inside and outside of dialogue.

2. Like the item variables, there are 10 reusable variables in the set
(ReusableVariables.v1, ReusableVariables.v2, etc) and these are also
customized on a per-conversation basis.

3. Unlike item variables, these are used to check if specific events have occurred
in the game that were recorded to the “Action History” system.

4. You might find that during implementation, some dialogue gets edited to
include #record tags along with some additional text. These tags are used by
other game systems on the unity side to trigger screen fades, character
moves, and to enable or disable game objects after dialogue ends. The
messages recorded by that tag can also be accessed and used to set the
values of ReisableVariables.v1-v10 in a similar way to the item variables.

5. For the demo version of the game, these other reusable variables should only
be used if we need to check if an out-of-dialogue action was performed, like
interacting with a simple button, or entering a specific room, etc.

6. Since these out-of-dialogue events might not use the action history system by
default, you’ll need to notify the development team if you would like to use one
of these out-of-dialogue events to gate part of a conversation. Even
something simple might require a unique script or tool in-engine to implement,

v2.0 Quest Design Bible 65

and it might be hard to predict the scope without discussing it with the
development team first.

7. Like with item variables, you’ll want to add an annotation at the start of the
dialogue with which reusable v variables you’ll be using, and how those values
should be set.

8. Using other reusable variables in the flow is just like any other condition. Using
light purple for the annotation and for the gates, just like with item variables,
will make it easier for the implementation team to find and test these during
setup. You might find it helpful to add a comment to the conditions to re-
iterate what event or out-of-dialogue thing it’s dependent on.

v2.0 Quest Design Bible 66

Tags
Tags are design tools that communicate with Unity to make something happen in a
custom system.

#growth
1. Growth tags are used to trigger Personality Skill

(Mentalist/Bureaucrat/Bargainer/Primalist) level ups.

2. They are limited to the end of major decisions and questlines as a lump-sum
reward.

3. They are written inside of the menu text option, and are comprised of four
parts:

a. #growth “NameOfSKill” “Growth Size” “ID Number

v2.0 Quest Design Bible 67

i. EX: #growth Mentalist Large 1205

4. The #growth tells Unity what script needs to run.

5. Mentalist tells Unity what size of reward needs to be granted (in essence, how
much XP to that skill).

a. Can use Mentalist, Bargainer, Bureaucrat, or Primalist depending on the
narrative context.

6. Large tells Unity what size of reward should be granted.

a. Can use Small, Medium, or Large

7. 1205 is the identifier of the growth tag.

a. The first two numbers (12 in this case) represent which dialogue flow this
fragment is found in.

v2.0 Quest Design Bible 68

b. The last two numbers (05 in this case) represent which growth tag we are
looking at in regards to the dialogue. In this case, this is the fifth growth
tag of dialogue ID 12.

c. IDs are stored in our Quest Data Master List:

8. A game designer would be the usual person to keep up with the IDs, reward
sizes, etc. What YOU need to do is mark where you feel the best place for the
reward should be and what Personality Skill should receive that reward.

#test
1. The “Test” tag is not named in a clear way, but it’s function is imperative.

2. The #test tag tells unity to put brackets around whatever follows the #test tag:

v2.0 Quest Design Bible 69

3. The following are the usable #test tags.

How it appears in Articy.

How it appears in Unity.

v2.0 Quest Design Bible 70

4. You need to use #test tags any time a personality skill or hardware mod is
being used for a check or an observation:

v2.0 Quest Design Bible 71

#item
1. Item tags are used to add or remove items from the player’s inventory during

dialogue.

2. An item tag has 4 main parts: the tag, command, item code, and quantity. An
example of a properly implemented item tag: “#item take 11073 1”

a. Tag: When we put #item in the dialogue box, the tag parser on the Unity-
side is expecting it to be followed by the other parts of the item tag,
separated by spaces.

b. Command: the next part of the tag needs to be either “give” or “take”.
Using “give” will add the item(s) to the player’s inventory. Using “take” will
attempt to remove the item(s) from the player’s inventory. It’s best practice
to make sure the player actually has the items, unequipped, before taking
them using the reusable item variables as shown above. However, if we
attempt to take items from the player that they don’t have, it shouldn’t

v2.0 Quest Design Bible 72

cause any errors. The “give” command will also attempt to remove the
given items from the NPC’s inventory if they have one, but the player will
always receive the items regardless of whether the NPC has the items to
give or not.

v2.0 Quest Design Bible 73

c. Item Code: the next part of the tag is the item’s ID value, which is an
integer implemented on the unity-side of the project. The Item ID’s are also
on the Quest Data Master List (In the Inventory Objects List sheet), but be
sure to highlight any changes or additions you make to the list and include
a date with the changes, since those will have to be edited in-engine on
the Unity side by the implementation or development team.

d. Quantity: the last part of the tag is the number of items that are being
given or taken. This needs to be an integer value above zero. This can’t be
skipped even if we are only giving or taking a single item, otherwise it will
cause errors.

3. When using an item tag, make sure that the player can’t return and re-do the
section of dialogue where the item tag lives. Otherwise, a player might be able
to repeat part of a conversation and end up giving or taking items repeatedly.

Talking Head Emotions
Talking head emotions are triggered by setting the
QuestVariables.emotionTypeIndex variable to a number between 0 and 7. Each
number corresponds to a specific emotion animation that will then play on the
talking head. Here are the emotions and their associated number values.

1/0: Neutral
1: Happy
2: Sad
3: Angry
4: Disgusted
5: Focused
6: Scared
7: Sympathetic

The emotion must be set via an instruction or pin immediately BEFORE the line you
want to play with the emotion. For example, if you want a particular NPC line to
have the Angry emotion, you need to set the variable to 3 right before that
dialogue line. You can put that instruction in the pin leading to that dialogue line, or
you can put an instruction node right before that line.

v2.0 Quest Design Bible 74

After each dialogue line, the emotionTypeIndex variable is re-set to 0, resulting in
a neutral talking head emotion. If you want multiple lines in a row to display the
same emotion, you’ll need to keep setting the emotionTypeIndex variable to your
desired emotion value before each of those lines individually.

Important Rules
1. Never use anything other than size 11 font in Articy fragments (you can use

different font types in annotations).

2. Only use integer-based variables.

3. ALWAYS consider the possibility of soft locks. The player must be allowed
forward through the quest even if there is nothing powered in their brain.

4. NEVER leave unfinished script active in Articy. Always comment them out until
they are 100% functional.

v2.0 Quest Design Bible 75

5. You CANNOT use an instruction at the very end of a dialogue thread or
conversation. There must ALWAYS be a dialogue fragment after an instruction.
This is due to how Unity digests Articy script.

FAQ

Info

Feedback Images

v2.0 Quest Design Bible 76

